Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 2 No. 1 (2022)

Investigasi strategi desain ruang ramah tunarungu berbasis simulasi multisensori

DOI
https://doi.org/10.7454/arsnet.v2i1.38
Published
2022-04-30
Article downloads
355
Submitted
2022-03-07
Accepted
2022-04-22

Abstract

Penelitian ini menggunakan metode simulasi analisis akustik dan visual untuk mengevaluasi kualitas ruang, serta memahami bagaimana desain ruang tertentu dapat menghadirkan kualitas multisensori yang dapat mendukung penyandang tunarungu. Simulasi analisis akustik menggunakan Ecotect untuk mengukur reverberasi dan pantulan suara. Sementara simulasi analisis visibilitas menggunakan depthmapX untuk mengukur isovist pengguna, integrasi, dan visibilitas ruang. Hasil simulasi menunjukkan bahwa ruang dengan sumber suara dari atas akan lebih baik dalam mendistribusi suara tanpa menimbulkan tingkat reverberasi ruang yang tinggi. Sumber suara berbentuk pocket dan organic enclosure dapat mengurangi tingkat reverberasi dan pantulan suara dalam ruang, meningkatkan privasi ruang sekaligus memberikan lapang pandang yang cukup luas bagi penglihatan kaum tunarungu. Hasil penelitian ini menemukan bahwa ada tiga konsep utama yang mempengaruhi kualitas akustik dan visual bagi kaum tunarungu, yaitu enclosure yang mempengaruhi tingkat privasi dan reverberasi ruang, integrasi yang menentukan visibilitas spasial dan orientasi massa atau bidang, serta material yang mempengaruhi kualitas absorpsi suara dalam ruang.



This study addressed the auditorial necessity and visual potential of the deaf using acoustic and visual analysis simulation. Due to the poorly designed room acoustics, the deaf people had difficulties communicating, despite the use of hearing aids or cochlear implants. This condition often causes some distorted sound waves in hearing aids. To compensate for the deficiency in auditory abilities, the deaf people relied on their peripheral vision as a source of information for communication. However, the understanding of parameters of room geometry that are necessary to support both the acoustic and visual qualities of the deaf was limited. Based on the depthmapX and Ecotect simulations, this study discovered that the source of the sound in space should come from the top to minimise the reverberation time. Spaces in the form of pockets and with organic enclosure also minimise the reverberation time and sound reflection, achieving privacy while maintaining the potential peripheral vision of the deaf. The study also revealed that a room with acoustic and visual qualities for the deaf should incorporate three concepts, i.e., an enclosure to achieve a certain level of privacy and sound reverberation; integration of spatial visibility following the room or wall orientations; and consideration of the use of materials to absorb the different frequencies of sound.

References

  1. Autodesk. (2008). Analysis in Ecotect. http://www.archilepore.it/www.archilepore.it/Mat._didattico_files/Analysis%20in%20Ecotect.pdf

  2. Azalia, N., Arvanda, E., Isnaeni, H., & Kusuma, N. R. (2020). Proxemic as spatial strategy on social space for deaf community. AIP Conference Proceedings, 2230(1), 040031-1–040031-6. https://doi.org/10.1063/5.0005723

  3. Bhargava, D. (n.d.). Hearing loss, chapter 2: Definitions, identification, and professionals. Trinity University. https://www.trinity.edu/sites/students-vision-hearing-loss/hl-definitions

  4. Blesser, B., & Salter, L-R. (2007). Spaces speak, are you listening? Experiencing aural architecture. The MIT Press.

  5. Building acoustics. (2021, Nov. 21). Designing Buildings. Diakses pada November 2, 2021 dari https://www.designingbuildings.co.uk/wiki/Building_acoustics

  6. Campus design and planning: DeafSpace (n.d.). Gallaudet University. Diakses pada September 14, 2021, dari https://www.gallaudet.edu/campus-design-and-planning/deafspace

  7. Ching, F. D. K., & Eckler, J. (2013). Introduction to architecture. Wiley

  8. Codina, C., Pascalis, O., Mody, C., Toomey, P., Rose, J., Gummer, L., & Buckley, D. (2011). Visual advantage in deaf adults linked to retinal changes. PLoS ONE, 6(6), 1–8. https://doi.org/10.1371/journal.pone.0020417

  9. Cox, T., & D’Antonio, P. (2016). Acoustic absorbers and diffusers: Theory, design and application. CRC Press. https://doi.org/10.1201/9781315369211

  10. de Quadros, R. M., Strobel, K., & Masutti, M. L. (2014). Deaf gains in Brazil: Linguistic policies and network establishment. In H-D. L. Bauman & J. J. Murray (Eds.), Deaf gain: Raising the stakes for human diversity (pp. 375–401). University of Minnesota Press.

  11. Egan, M. D. (2007). Architecture acoustics. J. Ross Publishing Classics.

  12. Harahap, R. M., & Lelo, L. (2020). Pengalaman mahasiswa tuli di ruang komunal Universitas Mercu Buana. Inklusi, 7(2), 167–206. https://doi.org/10.14421/ijds.070201

  13. Harahap, R. M., Santosa, I., Wahjudi, D., & Martokusumo, W. (2019). Interiority of public space in the Deaf Exhibition Center in Bekasi. Sinergi, 23(3), 245–252. https://doi.org/10.22441/sinergi.2019.3.009

  14. Hidayat, R. (2015). Peningkatan perbendaharaan kata anak tunarungu pada kelas 1 melalui pembelajaran pendekatan kontekstual di SLB B Wiyata Dharma 1 Sleman Yogyakarta [Skripsi, Universitas Negeri Yogyakarta]. Lumbung Pustaka Universitas Negeri Yogyakarta.

  15. Improve room acoustics. (n.d.). Hearing Link. Diakses pada November 2, 2021, dari https://www.hearinglink.org/living/lipreading-communicating/improve-room-acoustics/

  16. Jallu, A. S., Hussain, T., Hamid, W. U., & Pampori, R. A. (2019). Prelingual deafness: An overview of treatment outcome. Indian Journal of Otolaryngology and Head & Neck Surgery, 71, 1078–1089. https://doi.org/10.1007/s12070-017-1181-7

  17. Johnson, C. A. (2010). Articulation of deaf and hearing spaces using deaf space design guidelines : A community based participatory research with the Albuquerque Sign Language Academy [Tesis magister, University of New Mexico]. Electronic Theses and Dissertations at UNM Digital Repository.

  18. Julius, P., & Martin, Z. (1979). Human dimension and interior space: A source book of design reference standards. Watson-Guptill.

  19. Lewis, P., Tsurumaki, M., & Lewis, D. J. (2016). Manual of section. Princeton Architectural Press.

  20. Lomber, S. G. (n.d.). Brain plasticity following hearing loss and restoration. The Brain and Mind Institute, Western University. https://www.uwo.ca/bmi/research/featured/lomber.html

  21. Millett, P. (2018). Accommodating students with hearing loss in a teacher of the Deaf/Hard of Hearing education program. Journal of Educational Audiology, 15, 84–90.

  22. Ostwald, M. J., & Dawes, M. J. (2018). The mathematics of the modernist villa: Architectural analysis using space syntax and isovists. Birkhäuser Cham. https://doi.org/10.1007/978-3-319-71647-3

  23. Room acoustics for the deaf (n.d.). The Woolly Shepherd. Diakses pada November 2, 2021, dari https://www.woollyshepherd.co.uk/room-acoutics-for-the-deaf/

  24. Sangalang, J. (2012). What is privacy in deaf space? [Tesis magister, Gallaudet University]. Gallaudet University.

  25. studio27arch. (2019). Gallaudet University | StudioTwentySevenArchitecture. https://www.studio27arch.com/casestudy/fragment-04-gallaudet-university/

  26. TedxTalks. (2015, Maret 6). TEDxGallaudet - Robert Sirvage - An Insight from DeafSpace [Video]. YouTube. https://www.youtube.com/watch?v=EPTrOO6EYCY

  27. Touil, A., & Chabou, M. (2021). Visibility as a requirement for protection of the surroundings of immovable cultural property: Paradigm, incomprehension and questions. Apuntes, 33. https://doi.org/10.11144/javeriana.apu33.vrps

Downloads

Download data is not yet available.