Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 4 No. 1 (2024)

Encoding colour: Capturing rule-based logic in design studio

DOI
https://doi.org/10.7454/arsnet.v4i1.103
Published
2024-04-30
Article downloads
152
Submitted
2024-04-02
Accepted
2024-04-26

Abstract

This paper argues that introducing algorithmic thinking to basic design pedagogy should give prominence to the basic logic and attitudes rather than learning the computational devices and tools. This paper examines the integration of computation or algorithmic thinking into a basic design studio in architectural education at Universitas Indonesia. The integration is conducted through a colour composing exercise that comprises four major stages: identifying patterns, rulemaking, colouring-composing, and reflection. The findings from this study demonstrate how the students are utilising algorithmic thinking as the primary reason to design their colour composition in different ways and complexity. Furthermore, the students can also point out some underlying concepts and creative strategies of design computing concerning colour composing. The findings of this study indicate the importance to promote students' understanding of computation that is not merely tools but more into design reasonings and skills.

References

  1. Ackermann, U. (2000). Bauhaus (J. Fiedler & P. Feierabend, Eds.). Könemann.

  2. Akin, Ö. (1989). Computational design instruction: Toward a pedagogy. In M. McCullough, W. J. Mitchell, & P. Purcell (Eds.), The electronic design studio, 301–316. MIT Press. http://cumincad.scix.net/data/works/att/450c.content.pdf

  3. Bernhard, M. (2019). Domain transforms in architecture: Encoding and decoding of cultural artefacts [Doctoral dissertation, ETH Zürich]. ETH Zürich Research Collection. https://doi.org/10.3929/ethz-b-000381227

  4. Celani, G. (2004). Notes on the educational use of shape grammar. In R. Oxman, L. T. Tang, B. Kolarevic, & T. Kwan (Eds.), A workshop proceedings of a DCC 04. MIT.

  5. Colomina, B., Gálan, I. G., Kotsioris, E., & Meister, A. M. (2022). Radical pedagogies. The MIT Press.

  6. Deamer, P., Deeg, L., Metz, T., & Tursky, R. (2020). Design pedagogy: The new architectural studio and its consequences. Architecture_MPS, 18(1), 1–8. https://doi.org/10.14324/111.444.amps.2020v18i1.002

  7. Gremmler, T. (2014). Creative education and dynamic media. City University of Hong Kong Press.

  8. Harahap, M. M. Y., Tregloan, K., & Nervegna, A. (2019). Rationality and creativity interplay in research by design as seen from the inside. Interiority, 2(2), 177–194. https://doi.org/10.7454/in.v2i2.65

  9. Harani, A. R. (2023). Learning from nature: Exploring systems of plants and animals for form generation. ARSNET, 3(1), 32–45. https://doi.org/10.7454/arsnet.v3i1.73

  10. Hovestadt, L., Hirschberg, U., & Fritz, O. (2020). Atlas of digital architecture: Terminology, concepts, methods, tools, examples, phenomena. Birkhäuser

  11. Iordanova, I., & De Paoli, G. (2005). Hypotheses verification on the role of the medium. eCAADe 23 Proceedings, 99–106. https://doi.org/10.52842/conf.ecaade.2005.099

  12. Kotsopoulos, S. D. (2008). From design concepts to design descriptions. International Journal of Architectural Computing, 6(3), 335–360. https://doi.org/10.1260/1478-0771.6.3.335

  13. Meyer, D. E., & Schvaneveldt, R. W. (1971). Facilitation in recognizing pairs of words: Evidence of a dependence between retrieval operations. Journal of Experimental Psychology, 90(2), 227–234. https://doi.org/10.1037/h0031564

  14. Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63(2), 81–97. https://doi.org/10.1037/h0043158

  15. Murphy, O., Scanlon, E., Chan, L., Hoeferlin, D., Deamer, P., Uchikawa, Y., Raffles, H., Carrió, M. S., Rottenberg, S., Barnes, G., LeCavalier, J. P., Drake, S. C., Adams, A., & Dayer, C. (2020). Field notes on pandemic teaching: 5. Places, 2020. https://doi.org/10.22269/200422

  16. Olave, D. C. (2020). Step-by-step: The algorithmization of creativity under francoist developmentalism. Contour Journal, 5.

  17. Ostrowska-Wawryniuk, K., Strzała, M., & Słyk, J. (2022). Form follows parameter: Algorithmic-thinking-oriented course for early-stage architectural education. Nexus Network Journal, 24, 503–522. https://doi.org/10.1007/s00004-022-00603-1

  18. Oxman, R. (2004). Think-maps: Teaching design thinking in design education. Design Studies, 25(1), 63–91. https://doi.org/10.1016/S0142-694X(03)00033-4

  19. Oxman, R. (2008). Digital architecture as a challenge for design pedagogy: Theory, knowledge, models and medium. Design Studies, 29(2), 99–120. https://doi.org/10.1016/j.destud.2007.12.003

  20. Özkar, M. (2005). Lesson 1 in design computing does not have to be with computers. eCAADe Proceedings, 311–318. https://doi.org/10.52842/conf.ecaade.2005.311

  21. Özkar, M. (2007). Learning by doing in the age of design computation. In A. Dong, A. V. Moere, & J. S. Gero (Eds.), Computer-aided architectural design futures (CAADFutures) 2007 (pp. 99–112). Springer. http://papers.cumincad.org/data/works/att/cf2007_099.content.pdf

  22. Plowright, P. D. (2014). Revealing architectural design: Methods, frameworks and tools. Routledge.

  23. Riskiyanto, R., & Anandhita, G. (2022). Starbucks' expressive space: Reading the visual tectonic of architecture driven by colour system. ARSNET, 2(1). https://doi.org/10.7454/arsnet.v2i1.51

  24. Ruscio, A. M., & Amabile, T. M. (1999). Effects of instructional style on problem-solving creativity. Creativity Research Journal, 12(4), 251–266. https://doi.org/10.1207/s15326934crj1204_3

  25. Saginatari, D. P., & Atmodiwirjo, P. (2018). Reflection on ecological learning through architectural design studio. DIMENSI (Journal of Architecture and Built Environment), 45(1), 73–84. https://doi.org/10.9744/dimensi.45.1.73-84

  26. Schnabel, M. A. (2007). Parametric designing in architecture: A parametric design studio. In A. Dong, A. V. Moere, & J. S. Gero (Eds.), Computer-aided architectural design futures (CAADFutures) 2007 (pp. 237–250). Springer. https://doi.org/10.1007/978-1-4020-6528-6_18

  27. Schön, D. A. (2017). The reflective practitioner: How professionals think in action. Routledge. https://doi.org/10.4324/9781315237473

  28. Schunk, D. H. (2012). Learning theories: An educational perspective (6th ed). Pearson.

  29. Sternberg, R. J., & Lubart, T. I. (1999). The concept of creativity: Prospects and paradigms. In R. J. Sternberg (Ed.), Handbook of creativity (pp. 3–15). Cambridge University Press. https://doi.org/10.1017/CBO9780511807916.003 

  30. Stiny, G. (2001). How to calculate with shapes. In E. K. Antonsson & J. Cagan (Eds.), Formal engineering design synthesis (pp. 20–64). Cambridge University Press. https://doi.org/10.1017/CBO9780511529627.005

  31. Terzidis, K. (2006). Algorithmic architecture. Routledge. https://doi.org/10.4324/9780080461298

  32. Ürey, Z. Ç U. (2021). Fostering creative cognition in design education: A comparative analysis of algorithmic and heuristic educational methods in basic design education. METU Journal of the Faculty of Architecture, 38(1), 53–80. https://doi.org/10.4305/METU.JFA.2021.1.9

  33. Ward, T. B., & Kolomyts, Y. (2010). Cognition and creativity. In J. C. Kaufman & R. J. Sternberg (Eds.), The Cambridge handbook of creativity (pp. 93–112). Cambridge University Press. https://doi.org/10.1017/CBO9780511763205.008

Downloads

Download data is not yet available.